skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nabizadeh, Ebrahim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent years have seen a surge in interest in building deep learning-based fully data-driven models for weather prediction. Such deep learning models, if trained on observations can mitigate certain biases in current state-of-the-art weather models, some of which stem from inaccurate representation of subgrid-scale processes. However, these data-driven models, being over-parameterized, require a lot of training data which may not be available from reanalysis (observational data) products. Moreover, an accurate, noise-free, initial condition to start forecasting with a data-driven weather model is not available in realistic scenarios. Finally, deterministic data-driven forecasting models suffer from issues with long-term stability and unphysical climate drift, which makes these data-driven models unsuitable for computing climate statistics. Given these challenges, previous studies have tried to pre-train deep learning-based weather forecasting models on a large amount of imperfect long-term climate model simulations and then re-train them on available observational data. In this article, we propose a convolutional variational autoencoder (VAE)-based stochastic data-driven model that is pre-trained on an imperfect climate model simulation from a two-layer quasi-geostrophic flow and re-trained, using transfer learning, on a small number of noisy observations from a perfect simulation. This re-trained model then performs stochastic forecasting with a noisy initial condition sampled from the perfect simulation. We show that our ensemble-based stochastic data-driven model outperforms a baseline deterministic encoder–decoder-based convolutional model in terms of short-term skills, while remaining stable for long-term climate simulations yielding accurate climatology. 
    more » « less
  2. Abstract To better understand the dynamics and impacts of blocking events, their 3D structure needs to be further investigated. We present a comprehensive composite analysis of the 3D structure of blocks and its response to future climate change over North Pacific, North Atlantic, and Russia in summers and winters using reanalysis and two large-ensemble datasets from CESM1 and GFDLCM3. In reanalysis, over both ocean and land, the anomalous winds are equivalent-barotropic in the troposphere and stratosphere, and temperature anomalies are positive throughout the troposphere and negative in the lower stratosphere. The main seasonal and regional differences are that blocks are larger/stronger in winters; over oceans, the temperature anomaly is shifted westward due to latent heating. Analyzing the temperature tendency equation shows that in all three sectors, adiabatic warming due to subsidence is the main driver of the positive temperature anomaly; however, depending on season and region, meridional thermal advection and latent heating might have leading-order contributions too. Both GCMs are found to reproduce the climatological 3D structure remarkably well, but sometimes disagree on future changes. Overall, the future summertime response is weakening of all fields (except for specific humidity), although the impact on near-surface temperature is not necessarily weakened; e.g., the blocking-driven near-surface warming over Russia intensifies. The wintertime response is strengthening of all fields, except for temperature in some cases. Responses of geopotential height and temperature are shifted westward in winters, most likely due to latent heating. Results highlight the importance of process-level analyses of blocks’ 3D structure for improved understanding of the resulting temperature extremes and their future changes. 
    more » « less
  3. Abstract The forecast skill of numerical weather prediction (NWP) models and the intrinsic predictability can be different among weather regimes. Here, we examine the predictability of distinct Pacific‐North American weather regimes during extended boreal summer. The four identified weather regimes include Pacific trough, Arctic low, Arctic high, and Alaskan ridge. The medium range forecast skill of these regimes is quantified in the ECMWF and the National Centers for Environmental Prediction models from the TIGGE project. Based on anomaly correlation coefficient, persistence, and transition frequency, the highest forecast skill is consistently found for the Arctic high regime. Based on the instantaneous local dimension and persistence from a dynamical systems analysis, the Arctic high regime has the highest intrinsic predictability. The analysis also suggests that overall, the Pacific trough regime has the lowest intrinsic predictability. These findings are consistent with the forecast skills of the NWP models, and highlight the link between prediction skill and intrinsic predictability. 
    more » « less
  4. Abstract The movement of tropical cyclones (TCs), particularly around the time of landfall, can substantially affect the resulting damage. Recently, trends in TC translation speed and the likelihood of stalled TCs such as Harvey have received significant attention, but findings have remained inconclusive. Here, we examine how the June-September steering wind and translation speed of landfalling Texas TCs change in the future under anthropogenic climate change. Using several large-ensemble/multi-model datasets, we find pronounced regional variations in the meridional steering wind response over North America, but―consistently across models―stronger June-September-averaged northward steering winds over Texas. A cluster analysis of daily wind patterns shows more frequent circulation regimes that steer landfalling TCs northward in the future. Downscaling experiments show a 10-percentage-point shift from the slow-moving to the fast-moving end of the translation-speed distribution in the future. Together, these analyses indicate increases in the likelihood of faster-moving landfalling Texas TCs in the late 21stcentury. 
    more » « less